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Abstract

Following the success of the CHEEF method [Chen IL, Chen JT, Kuo SR, Liang MT. A new method for true and spurious

eigensolutions of arbitrary cavities using the combined Helmholtz exterior integral equation formulation method. J Acoust Soc Am 2001;

109(3):982–98] and the real-part BEM [Kuo SR, Chen JT, Huang CX. Analytical study and numerical experiments for true and spurious

eigensolutions of a circular cavity using the real-part dual BEM. Int J Numer Methods Eng 2000; 48:1401–22] for solving the membrane

eigenproblem, we extend to the plate problem in this paper. The boundary integral equation method (BIEM) using only the real-part

kernel instead of the complex-valued kernel is employed to solve the plate eigenproblem for saving half effort in computation. The

spurious eigenvalue that resulted due to insufficient constraint is examined. To deal with this problem, a combined Helmholtz exterior

integral equation formulation method (CHEEF) is employed to provide sufficient constraints to filter out spurious eigenvalues. The

constraint equations of the transverse displacement, normal derivative and tangent derivative for the exterior collocating points are

derived. If these constraint equations are properly chosen, one collocating point was sufficient to filter out all the spurious eigenvalues

easily and efficiently, even for the repeated spurious eigenvalues. Finally, numerical experiments are performed to verify the analytical

results.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

For the simply-connected eigenproblem, it is well known that either the real-part or imaginary-part boundary integral
equations (BIEs) result in spurious eigenvalues [1]. De Mey [2,3], Yas’ko [4], Hutchinson and Wong [5–7] employed only
the real-part kernel to solve the membrane and plate vibrations free of the complex-valued computation in sacrifice of
occurrence of spurious solutions. Hutchinson [8] presented a direct BEM for plate vibration involving displacement, slope,
moment and shear force. They were able to obtain numerical results for clamped plates by employing only the real-part
BEM with obvious computational gains. However, this saving leads to spurious eigenvalues in addition to true ones for
free vibration analysis. One has to investigate the mode shapes in order to identify and reject the spurious ones. Shaw [9]
commented that using only the real-part kernel was incorrect since the characteristic equation must satisfy the real-part and
imaginary-part equations at the same time. Hutchinson [10] replied that the claim of incorrectness was perhaps a little
strong, since the real-part BEM does not miss any true eigenvalue, although the solution is contaminated by spurious ones
according to numerical experiences. However, no proof was provided at that time. Until 2000, Chen and his coworkers [11]
proved the existence of spurious eigenvalues and pointed out that they are zeros of Bessel function of the second kind
through a circular membrane for the real-part DBEM. Niwa et al. [12] also stated that ‘‘One must take care to use the
e front matter r 2007 Elsevier Ltd. All rights reserved.
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complete Green’s function for outgoing waves, as attempts to use only the real (singular) or imaginary (regular) part
separately will not provide the complete spectrum’’. As quoted from the reply of Hutchinson [10], this comment is not
correct since the real-part BEM does not lose any true eigenvalue. The reason is that the real-part and imaginary-part
kernels satisfy the Hilbert transform pair. They are not fully independent. To use both parts, real and imaginary
kernels may be not economical in computation. Complete eigenspectrum is imbedded in either real or imaginary-part
kernel. If we usually need to look for the eigenmode as well as eigenvalue, the sorting for the spurious solutions pay
a small overhead by identifying the mode shapes. Chen et al. [13] commented that the nodal line of spurious modes may
be reasonable which could mislead the judgments of the true and spurious ones, since the true and spurious modes
may have the same nodal line in case of different eigenvalues. This is why Chen and his coworkers have developed
several techniques, e.g., dual formulation [13], domain partition [14], singular value decomposition (SVD) updating
technique [15], combined Helmholtz exterior equation formulation (CHEEF) method [16] for sorting out true and spurious
eigenvalues. The main concept of these techniques to treat spurious or fictitious frequency is to provide sufficient
constrains to overcome the rank deficiency of the system due to boundary integral formulation. For a simply-connected
eigenproblem, the complex-valued boundary integral formulation can offer sufficient constraints and spurious eigenvalue
does not appear. Even though the complex-valued BEM is employed, spurious eigenvalue may also appear for multiply-
connected problems [17,18]. For plate dynamics using BEM, readers may consult with one book and two review articles
[19–21].

Using the dual MRM or the real-part dual BEM, spurious eigenvalues can be filtered out by checking the residue
between the singular and hypersingular equations [22]. Both the dual MRM [23] method and the real-part dual BEM [15] in
conjunction with the SVD technique must calculate a matrix with dimension 4N by 2N, where 2N is the number of
elements. For the exterior acoustics, complex-valued integral equation formulations usually result in fictitious frequencies.
Schenck [24] proposed a combined Helmholtz interior integral equation formulation (CHIEF) method to suppress
fictitious frequencies using additional constraints provided by null-field integral equation by collocating interior points.
Recently, some results [25] on the annular plate with the CHIEF method have been reported. Based on the concept of the
CHIEF method, the CHEEF method has been successively applied to the membrane eigenproblem [16]. By applying the
CHEEF method to the plate problem, the missing constraints can be recovered by applying the integral equations on a
number of points located outside the domain. Namely, constraints can be provided from null-field integral equations [26].
Only a matrix with matrix dimension (2N+1) by 2N or (2N+2) by 2N for CHEEF instead of 4N by 2N in dual
formulation is required. The gain of smaller size of matrix is obvious.

In this study, we will employ the CHEEF method to filter out spurious solutions for circular plate eigenproblems. The
selection of constraint equations for the number and position of the exterior points will be examined analytically and
verified numerically. After assembling the CHEEF equations, an SVD technique [27] is employed to determine the
eigenvalues, multiplicity and boundary modes. The boundary modes can be extracted easily from the right unitary matrix
using SVD with respect to the influence matrix. The equations of constraint in the transverse displacement, normal
derivative and tangent derivative for the exterior collocating points were employed to increase the rank such that spurious
eigenvalues can be easily and efficiently filtered out.
2. Boundary integral equations for a plate eigenproblem

The governing equation for the free flexural vibration of a uniform thin plate is shown as follows:

r4uðxÞ ¼ l4uðxÞ; x 2 O (1)

where u is the lateral displacement, l is the frequency parameter (l4 ¼ o2r0h=D), o is the circular frequency, r0 is the
volume density, D is the flexural rigidity expressed as D ¼ Eh3=12ð1� v2Þ in terms of the Young’s modulus E, the Poisson
ratio n and the plate thickness h, and O is the domain of the thin plate.

The integral representation for the plate eigenproblem can be derived from the Rayleigh–Green identity [19] as follows:

uðxÞ ¼ �

Z
B

Uðs; xÞvðsÞdB ðsÞ þ

Z
B

Yðs; xÞmðsÞdB ðsÞ

�

Z
B

Mðs; xÞ yðsÞdB ðsÞ þ

Z
B

V ðs;xÞu ðsÞdB ðsÞ; x 2 O ð2Þ

yðxÞ ¼ �
Z

B

Uyðs;xÞv ðsÞdB ðsÞ þ

Z
B

Yyðs; xÞm ðsÞ dB ðsÞ

�

Z
B

Myðs;xÞyðsÞ dB ðsÞ þ

Z
B

V yðs;xÞuðsÞ dB ðsÞ; x 2 O ð3Þ
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mðxÞ ¼ �

Z
B

Umðs;xÞvðsÞdB ðsÞ þ

Z
B

Ymðs; xÞmðsÞdBðsÞ

�

Z
B

Mmðs;xÞyðsÞdBðsÞ þ

Z
B

Vmðs;xÞuðsÞdBðsÞ; x 2 O ð4Þ

vðxÞ ¼ �

Z
B

Uvðs;xÞvðsÞdBðsÞ þ

Z
B

Yvðs;xÞmðsÞdBðsÞ

�

Z
B

Mvðs;xÞyðsÞdBðsÞ þ

Z
B

V vðs;xÞuðsÞdBðsÞ; x 2 O ð5Þ

where B is the boundary of the domain O, uðxÞ; yðxÞ;mðxÞ and vðxÞ are the displacement, slope, moment and shear force, s

and x mean the source and field points, respectively. The kernel functions U, Y, M, V, Uy, Yy, My, Vy, Um, Ym, Mm, Vm,
Uv, Yv, Mv and Vv in Eqs. (2)–(5) can be expanded to degenerate kernels by separating the source and field points and will
be elaborated on later. The kernel function U cðs;xÞ in Eq. (2) is the fundamental solution which satisfies

r4U cðs;xÞ � l4U cðs; xÞ ¼ d ðs� xÞ, (6)

where r4 is the biharmonic operator and dðs� xÞ is the Dirac–d function, respectively. Considering the two singular
solutions (Y 0ðlrÞ and K0ðlrÞ, which are the zeroth-order of the second-kind Bessel and modified Bessel functions,
respectively) [8] and two regular solutions (J0ðlrÞ and I0ðlrÞ, which are the zeroth-order of the first-kind Bessel and
modified Bessel functions, respectively) in the fundamental solution, we have the complex-valued kernel,

U cðs; xÞ ¼
1

8l2
Y 0ðlrÞ þ iJ0ðlrÞ þ

2

p
ðK0ðlrÞ þ iI0ðlrÞÞ

� �
; (7)

where r � js� xj and i2 ¼ �1. By selecting the real-part kernel of U cðs;xÞ as the kernel Uðs;xÞ, the other three kernels,
Yðs; xÞ, Mðs; xÞ and V ðs; xÞ in Eq. (2) can be obtained by applying the following slope, moment and effective shear
operators defined by

KY ¼
qð�Þ
qn

(8)

KM ¼ nr2ð�Þ þ ð1� nÞ
q2ð�Þ
qn2

(9)

KV ¼
q
qn
r2ð�Þ þ ð1� nÞ

q
qt

q
qn

q
qt
ð�Þ

� �� �
(10)

to the kernel Uðs;xÞ with respect to the source point, where q=qn and q=qt are the normal and tangential derivatives,
respectively, and r2 means the Laplacian operator. In the polar coordinate of (R; y), the normal and tangential derivatives
can be expressed by q=qR and ðq=qRÞðq=qyÞ, respectively, and then the three kernel functions can be rewritten as

Yðs;xÞ ¼ KY;sðUðs;xÞÞ ¼
qUðs;xÞ

qR
(11)

Mðs; xÞ ¼ KM;sðUðs;xÞÞ ¼ nr2
s Uðs;xÞ þ ð1� nÞ

q2Uðs;xÞ

qR2
(12)

V ðs; xÞ ¼ KV ;sðUðs;xÞÞ ¼
q
qR
r2

s Uðs;xÞ
� �

þ ð1� nÞ
1

R

� �
q
qy

q
qR

1

R

qUðs;xÞ

qy

� �� �
:

. (13)

The expressions for yðxÞ;mðxÞ and vðxÞ in Eqs. (3)–(5), which can be obtained by applying the operators in Eqs. (8)–(10)
to u(x) in Eq. (2) with respect to the field point x(r,f), are

yðxÞ ¼ KY;xðuðxÞÞ ¼
quðxÞ

qr
, (14)

mðxÞ ¼ KM;xðuðxÞÞ ¼ nr2uðxÞ þ ð1� nÞ
q2u ðxÞ

qr2
, (15)

vðxÞ ¼ KV ;xðuðxÞÞ ¼
q
qr
ðr2

s uðxÞÞ þ ð1� nÞ
1

r

� �
q
qf

q
qr

1

r
quðxÞ

qf

� �� �
, (16)
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In this way, the kernel functions Uy, Yy, My, Vy, Um, Ym, Mm, Vm, Uv, Yv, Mv and Vv can be obtained by applying the
operators in Eqs. (8)–(10) to U, Y, M and V with respect to the field point xðr;fÞ.

The null-field integral equations for the null field point (including the boundary point if exterior degenerate kernels are
adopted) are shown as follows:

0 ¼ �

Z
B

Uðs;xÞvðsÞdBðsÞ þ

Z
B

Yðs;xÞmðsÞdBðsÞ

�

Z
B

Mðs;xÞyðsÞdBðsÞ þ

Z
B

V ðs;xÞuðsÞdBðsÞ; x 2 OC [ B, ð17Þ

0 ¼ �

Z
B

Uyðs; xÞvðsÞdBðsÞ þ

Z
B

Yyðs; xÞmðsÞdBðsÞ

�

Z
B

Myðs;xÞyðsÞdBðsÞ þ

Z
B

V yðs;xÞuðsÞ dB ðsÞ; x 2 OC [ B, ð18Þ

0 ¼ �

Z
B

Umðs;xÞvðsÞdBðsÞ þ

Z
B

Ymðs;xÞmðsÞdBðsÞ

�

Z
B

Mmðs; xÞyðsÞdBðsÞ þ

Z
B

Vmðs;xÞuðsÞdBðsÞ; x 2 OC [ B, ð19Þ

0 ¼ �

Z
B

Uvðs;xÞvðsÞdBðsÞ þ

Z
B

Yvðs;xÞmðsÞdBðsÞ

�

Z
B

Mvðs; xÞyðsÞdBðsÞ þ

Z
B

Vvðs; xÞuðsÞdBðsÞ; x 2 OC [ B, ð20Þ

where OC is the complementary domain of O. It is a closed set since B can be included. Since the four equations of Eqs.
(17)–(20) in the plate formulation are provided, there are 6 (C2

4) options for choosing any two equations to solve the
problems. For simplicity, the Eqs. (17) and (18) are used here to analyze the plate problems. In the real implementation, the
point in the null-field integral equation can be exactly located on the real boundary, B, while kernel functions are expressed
in proper degenerate forms. Consequently, all the improper integrals disappear and transform to series sum in the BIEs
since the potential across the boundary can be explicitly determined in both sides using degenerate kernels. Successful
experiences on Laplace problems and biharmonic problems can be found in [1,26].

The displacement u(s), slope y(s), moment m(s) and shear force v(s) along the circular boundaries in the null-field integral
equations are expanded in terms of Fourier series, respectively, as shown below:

uðsÞ ¼ c0 þ
XM
n¼1

ðcn cos n yþ dn sin nyÞ; s 2 B, (21)

yðsÞ ¼ g0 þ
XM
n¼1

ðgn cos n yþ hn sin n yÞ; s 2 B, (22)

mðsÞ ¼ a0 þ
XM
n¼1

ðan cos nyþ bn sin nyÞ; s 2 B, (23)

vðsÞ ¼ p0 þ
XM
n¼1

ðpn cos n yþ qn sin n yÞ; s 2 B, (24)

where a0; an; bn; c0; cn; dn; g0; gn; hn; p0; pn and qn are the Fourier coefficients and M is the number of Fourier series terms.
In the polar coordinate, the field point and source point can be expressed as (r;f) and (R; y), respectively. By employing

the separation technique for the source and field points, the kernel functions Uðs;xÞ and Yðs;xÞ are expanded in the series
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form as follows:

Uðs;xÞ ¼
1

8l2
Y 0ðlrÞ þ

2

p
K0ðlrÞ

� �

¼

UI ðs; xÞ ¼ 1
8l2
P1

m¼0

�mfJmðlrÞY mðlRÞ þ 2
p ImðlrÞKmðlRÞg cosðmðy� fÞÞ; RXr

UEðs;xÞ ¼ 1
8l2
P1

m¼0

�mfJmðlRÞY mðlrÞ þ 2
p ImðlRÞKmðlrÞg cos ðmðy� fÞÞ; r4R

8>>><
>>>:

ð25a;bÞ

Yðs;xÞ ¼
qUðs;xÞ

qR

¼

YI ðs; xÞ ¼ 1
8l

P1
m¼0

�mfJmðlrÞY 0mðlRÞ þ 2
p ImðlrÞK 0mðlRÞg cosðmðy� fÞÞ; RXr

YEðs;xÞ ¼ 1
8l

P1
m¼0

�mfJ
0
mðlRÞY mðlrÞ þ 2

p I 0mðlRÞKmðlrÞg cosðmðy� fÞÞ; r4R

8>>><
>>>:

ð26a;bÞ

where the superscripts ‘‘I’’ and ‘‘E’’ denote the interior and exterior cases of U(s,x) kernel. The other kernels in the
boundary integral equations can be obtained by utilizing the operators of Eqs. (8)–(10) with respect to the U(s,x) kernel.
The degenerate kernels M and V in Eqs. (17) are listed in Appendix A. The kernel function with the superscript ‘‘I’’ is
chosen while the field point is inside the circular region; otherwise, the kernels with the superscript ‘‘E’’ are chosen.

For the clamped circular plate (u ¼ 0 and y ¼ 0) with a radius a, the moment and shear force, m(s) and v(s), are
expanded into Fourier series as shown in Eqs. (23) and (24).

By substituting the degenerate kernels, Eqs. (25) and (26), into Eqs. (17) on the boundary (r ¼ R ¼ a), we have

0 ¼ �

Z
B

Uðs;xÞvðsÞdBðsÞ þ

Z
B

Yðs;xÞmðsÞdBðsÞ

¼ �

Z
B

1

8la2

X1
m¼0

�m JmðlaÞY mðlaÞ þ
2

p
ImðlaÞKmðlaÞ

� 	
cosðmðy� fÞÞ

 !

� p0 þ
XM
n¼1

ðpn cos nyþ qn sin nyÞ

 !
dBðsÞ þ

Z
B

1

8l

X1
m¼0

�m J 0mðlaÞY mðlaÞ

� 

þ
2

p
I 0mðlaÞKmðlaÞ

	
cosðmðy� fÞÞ a0 þ

XM
n¼1

ðan cos nyþ bn sin nyÞ

 !
dBðsÞ ð27Þ

According to the orthogonal property, Eq. (27) can be rewritten as

0 ¼ �
pa

4l2
XM
m¼0

JmðlaÞY mðlaÞ þ
2

p
ImðlaÞKmðlaÞ

� 	 

�ðpm cosmfþ qm sinmfÞ
�
þ

pa

4l

XM
m¼0

J 0mðlaÞY m

�
ðlaÞ

 

þ
2

p
I 0mðlaÞKmðlaÞ

	
ðam cos mfþ bm sin mfÞ

�
. ð28Þ

Since Eq. (28) is valid for any f, we have

JmðlaÞY mðlaÞ þ
2

p
ImðlaÞKmðlaÞ

� 	
pm � l J 0mðlaÞY ðlaÞ þ

2

p
I 0mðlaÞKmðlaÞ

� 	
am ¼ 0, (29)

JmðlaÞY mðlaÞ þ
2

p
ImðlaÞKmðlaÞ

� 	
qm � l J 0mðlaÞY ðlaÞ þ

2

p
I 0mðlaÞKmðlaÞ

� 	
bm ¼ 0. (30)

Similarly, Eq. (18) yields

JmðlaÞY 0mðlaÞ þ
2

p
ImðlaÞK 0mðlaÞ

� 	
pm � l J 0mðlaÞY 0ðlaÞ þ

2

p
I 0mðlaÞK 0mðlaÞ

� 	
am ¼ 0, (31)
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JmðlaÞY 0mðlaÞ þ
2

p
ImðlaÞK 0mðlaÞ

� 	
qm � l J 0mðlaÞY 0ðlaÞ þ

2

p
I 0mðlaÞK 0mðlaÞ

� 	
bm ¼ 0. (32)

To seek nontrivial data for the generalized coefficients of am, bm, pm and qm, we can obtain the eigenequations by using
either Eqs. (29) and (31) or Eqs. (30) and (32)

JmðlaÞY mðlaÞ þ ð2=pÞImðlaÞKmðlaÞ

JmðlaÞY mðlaÞ þ ð2=pÞImðlaÞK 0mðlaÞ
¼

J 0mðlaÞY ðlaÞ þ ð2=pÞI 0mðlaÞKmðlaÞ

J 0mðlaÞY 0mðlaÞ þ ð2=pÞI 0mðlaÞK 0mðlaÞ
. (33)

After recollecting the terms, Eq. (33) can be simplified to

½KmðlaÞY mþ1ðlaÞ � Kmþ1ðlaÞY mðlaÞ� � fImþ1ðlaÞJmðlaÞ þ ImðlaÞJmþ1ðlaÞg ¼ 0. (34)

The former part in Eq. (34) inside the bracket is the spurious eigenequation, while the latter part inside the brace is found
to be the true eigenequation after comparing with the exact eigenequation [28].

By selecting finite terms of the Fourier series representation in Eqs. (21)–(24) and uniformly collocating sufficient points
on the boundary, a linear algebraic system can be constructed by using Eqs. (17)–(20) in conjunction with the degenerate
kernel. The direct searching approach [19] is employed to determine the natural frequency of parameters through singular
value decomposition (SVD). The right unitary vector in SVD is the boundary mode, i.e., the Fourier coefficients in
Eqs. (21)–(24). The mode shape can be obtained by substituting the boundary mode into the integral representation for the
field point of Eq. (2). For the clamped case, a linear algebraic system can be expressed as

U Y

Uy Yy

" #
4N�4N

v

m

� 	
4N�1

¼
0

0

� 	
4N�1

. (35)

3. CHEEF treatment for spurious eigensolution

Following the success of CHEEF method to suppress spurious eigenvalue for membrane eigenproblems [16], the CHEEF
method is adopted to suppress the occurrence of the spurious eigenvalues for the free vibration of plate problem. A
clamped case is demonstrated for simplicity. By substituting the real-part degenerate kernels of Eqs. (25a) and (26a) for the
interior point (0oroca), the Fourier expansions for the moment and effect shear and the relationship between the
Fourier coefficients (i.e. Eq. (29) and Eq. (30)), into the integral representation for the displacement u(x) of Eq. (2), we have

umðr;fÞ ¼
1

2pl2
1

J 0mðlaÞY mðlaÞ þ ð2=pÞI 0mðlaÞKmðlaÞ

�
ðImðlrÞð2KmðlaÞ þ lapðJmðlaÞKmþ1ðlaÞ

� Jmþ1ðlaÞKmðlaÞÞY mðlaÞÞ þ pJmðlrÞððlaImþ1ðlaÞKmðlaÞ � 1ÞY mðlaÞ

þ laImðlaÞKmðlaÞY mþ1ðlaÞÞ

�
am cos mfþ bm sin mfð Þ; 0oroa; 0pfo2p ð36Þ

Similarly, for the null-field equation (r4a) of Eq. (17) yields

0 ¼
a

2l
ðImþ1ðlaÞJmðlaÞ þ ImðlaÞJmþ1ðlaÞÞ½KmðlrÞY mðlaÞ � KmðlaÞY mðlrÞ�

fJ 0mðlaÞY mðlaÞ þ ð2=pÞI 0mðlaÞKmðlaÞg

� �
� am cos mfþ bm sin mfð Þ r4a; 0pfo2p, ð37Þ

Since the true eigenvalue lt satisfies Imþ1ðltaÞJmðltaÞ þ ImðltaÞJmþ1ðltaÞ ¼ 0, we can find that the field of the interior
(roa) and exterior (r4a) points are the nontrivial mode (Eq. (36)) and null-field (Eq. (37)), respectively. It is found that
the solution of the exterior point (r4a) is not a null-field in Eq. (37) for the spurious eigenvalue ls which satisfies
KmðlsaÞY mþ1ðlsaÞ � Kmþ1ðlsaÞY mðlsaÞ ¼ 0. This provides us a clue to filter out spurious eigenvalue. In this way, the null-
field equations can be selected as independent constraints to suppress the occurrence of the spurious eigenvalues for the
plate eigenproblem. In other words, Eq. (37) can be employed to increase the rank once the null-field equation is not
satisfied. Similarly, the nontrivial normal derivative yðxÞ and tangent derivative tðxÞ of the exterior points can also be
employed to provide additional independent constraints as shown below:

0 ¼ �
al
4

ðImþ1ðlaÞJmðlaÞ þ ImðlaÞJmþ1ðlaÞÞ

fJ 0mðlaÞY mðlaÞ þ ð2=pÞI 0mðlaÞKmðlaÞg

� �
� ½KmðlaÞY m�1ðlrÞ þ Km�1ðlrÞY mðlaÞ þ Kmþ1ðlrÞY mðlaÞ � KmðlaÞY mþ1ðlrÞ�

� ðam cos mfþ bm sin mfÞ; r4a; 0pfo2p, ð38Þ
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0 ¼
a

2l
m

r

� �
ðImþ1ðlaÞJmðlaÞ þ ImðlaÞJmþ1ðlaÞÞðKmðlrÞY mðlaÞ � KmðlaÞY mðlrÞÞ

fJ 0mðlaÞY mðlaÞ þ ð2=pÞI 0mðlaÞKmðlaÞg

� �
� ðbm cos mf� am sin mfÞ; r4a; 0pfo2p. ð39Þ

In this section, we employ the CHEEF method to deal with the problem of spurious eigenvalues. Firstly, we choose a
CHEEF point (r1, f1) outside the domain (r14a, 0pf1o2p) and substitute the CHEEF point (r1;f1) into Eq. (37) to get

0 ¼
a

2l
ðImþ1ðlaÞJmðlaÞ þ ImðlaÞJmþ1ðlaÞÞ½Kmðlr1ÞY mðlaÞ � KmðlaÞY mðlr1Þ�

fJ 0mðlaÞY mðlaÞ þ ð2=pÞI 0mðlaÞKmðlaÞg

� �
ðam cos mf1 þ bm sin mf1Þ; r14a; 0pf1o2p. ð40Þ

Comparing with the true eigenequation Imþ1ðlaÞJmðlaÞ þ ImðlaÞJmþ1ðlaÞ ¼ 0, Eq. (40) shows the null field as expected
when r14a. On the other hand, the spurious eigenvalue is not the case. In this way, Eq. (40) can provide the independent
constraint to suppress the spurious eigensolution if Kmðlsr1ÞY mðlsaÞ � KmðlsaÞY mðlsr1Þa0 where ls satisfies KmðlsaÞ

Y mþ1ðlsaÞ � Kmþ1ðlsaÞY mðlsaÞ ¼ 0. The CHEEF point (r1;f1) may fail in adding independent equations, while
Kmðlsr1ÞY mðlsaÞ � KmðlsaÞY mðlsr1Þ ¼ 0. The reason is that we get a trivial constraint equation. The possible failure
positions of rf which satisfy Kmðlsrf ÞY mðlsaÞ � KmðlsaÞY mðlsrf Þ ¼ 0 are shown in Table 1 for the null-field equation of
displacement. For the mode type (m, n) in Table 1, m denotes the number of diametrical nodes and n denotes the number of
circular nodes for interior mode and for radiation mode, respectively. Similarly, by considering the normal derivative
constrains, the possible failure positions of rf which satisfies KmðlsaÞY m�1ðlsrf Þ þ Km�1ðlsrf ÞY mðlsaÞ þ Kmþ1ðlsrf Þ
Y mðlsaÞ � KmðlsaÞY mþ1ðlsrf Þ ¼ 0 are shown in Table 2. By comparing Eq. (37) with Eq. (39), the possible failure positions
of the tangent derivative constraint are the same as those of the displacement constraint in Table 1.

Because one added point supplies at most one independent constraint, an additional point is required for the spurious
eigenvalues of multiplicity two. In order to obtain sufficient constraints, we add another point (r2;f2) in the exterior
domain (r24a, 0pf2o2p). By substituting this field point (r2;f2) into Eq. (37), we have

0 ¼
a

2l

XM
m¼0

ðImþ1ðlaÞJmðlaÞ þ ImðlaÞJmþ1ðlaÞÞðKmðlr2ÞY mðlaÞ � KmðlaÞY mðlr2ÞÞ
fJ 0mðlaÞY mðlaÞ þ ð2=pÞI 0mðlaÞKmðlaÞg

� �

�ðam cos mf2 þ bm sin mf2Þ: ð41Þ
Table 2

The radius of failure points rf for each spurious frequency ls satisfying KmðlsaÞY mþ1ðlsaÞ �Kmþ1ðlsaÞY mðlsaÞ ¼ 0 in the normal derivative constraint

[ KmðlsaÞY m�1ðlsrf Þ þ Km�1ðlsrf ÞY mðlsaÞ þ Kmþ1ðlsrf ÞY mðlsaÞ � KmðlsaÞY mþ1ðlsrf Þ ¼ 0 ]

No. Frequency(ls) Mode type rf1 rf2 rf3 rf4

1 1.42796 (1,0) 2.51699 4.86297 7.08935 9.30402

2 2.63016 (2,0) 1.87589 3.17561 4.40054 5.61216

3 3.17058 (0,0) 1.68407 2.71224 3.70564 4.69865

4 3.78094 (3,0) 1.63880 2.56548 3.43099 4.28213

5 4.64695 (1,1) 1.47590 2.17915 2.85900 3.53782

6 4.90423 (4,0) 1.51197 2.24418 2.92232 3.58557

Table 1

The radius of failure points rf for each spurious frequency ls satisfying KmðlsaÞY mþ1ðlsaÞ � Kmþ1ðlsaÞY mðlsaÞ ¼ 0 in the transverse displacement

constraint [ Kmðlsrf ÞY mðlsaÞ �KmðlsaÞY mðlsrf Þ ¼ 0 ]

No. Frequency (ls) Mode typea rf1 rf2 rf3 rf4

1 1.42796 (1,0) 3.81005 6.01947 8.22795 10.4327

2 2.63016 (2,0) 2.58583 3.81087 5.02250 6.22735

3 3.17058 (0,0) 2.23941 3.22393 4.21410 5.20439

4 3.78094 (3,0) 2.14307 3.01415 3.86758 4.71271

5 4.64695 (1,1) 1.85261 2.52824 3.20586 3.88285

6 4.90423 (4,0) 1.90970 2.59573 3.26242 3.91997

aIn mode type (m, n), m denotes the number of diametrical nodes and n denotes the number of circular nodes for interior mode and wave numbers for

exterior mode, respectively.
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Collecting the coefficients of am and bm in Eqs. (40) and (41), we have

½W � ¼
cosðmf1Þ sinðmf1Þ

cosðmf2Þ sinðmf2Þ

" #
. (42)

If the determinant of the matrix [W] is zero, then Eqs. (40) and (41) do not provide two independent constraints for am

and bm. In this case, the intersection angle (f1 � f2) between the two selected points satisfying

sinðmðf1 � f2ÞÞ ¼ 0 or f1 � f2 ¼
np
m
; m ¼ 1; 2; 3 . . . ; n ¼ 0; 1; 2; 3 . . . (43)
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Fig. 1. The first and second minimum singular values s1 and s2 vs. l for a circular clamped plate using the real-part U, Y boundary integral equation

Table 3

The former nine frequency parameters (l) for the clamped circular plate

Mode Analytic method Semi-analytic method ABAQUS Mode type

1 1.4280(S) 1.4280 N/A (1,0)

2 2.6302(S) 2.6300 N/A (2,0)

3 3.1706(S) 3.1710 N/A (0,0)

4 3.1962(T) 3.1960 3.1967 (0,0)

5 3.7809(S) 3.7810 N/A (3,0)

6 4.6109(T) 4.6110 4.6124 (1,0)

7 4.6470(S) 4.6470 N/A (1,1)

8 4.9042(S) 4.9040 N/A (4,0)

9 5.9057(T) 5.9060 5.9080 (2,0)

S: spurious T: true.
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makes the two equations dependent. Besides, the radius r1 and r2 in CHEEF points (r1;f1) and (r2;f2) should not make
the bracket in both Eqs. (37) and (38) be zero. Therefore, we must avoid these failure points in order to effectively filter out
the spurious eigenvalues of multiplicity two.

By moving the field point x to be the CHEEF point outside the domain for the clamped case, we have

UC YC

UC
y YC

y

" #
2NC�4N

v

m

� 	
4N�1

¼

0

..

.

0

8><
>:

9>=
>;

4N�1

, (44)

where the superscript C denotes the CHEEF point in the null-field equation and the subscript Nc(X1) indicates
the number of additional CHEEF points. Combining Eqs. (35) and (44) together to obtain the overdetermined system,
we have

U Y

Uy Yy

UC YC

UC
y YC

y

2
666664

3
777775
ð4Nþ2NC Þ�4N

v

m

� 	
4N�1

¼

0

..

.

0

8><
>:

9>=
>;
ð4Nþ2NC Þ�1

. (45)

Therefore, an overdetermined system is obtained to ensure a unique solution through SVD detection.
The concept of the CHEEF method and SVD technique of updating term are the same in constructing an

overdetermined system to obtain a unique solution. From the view point of computation, CHEEF method used the
minimum number of dimensions than that of the SVD technique of updating term using dual equations although it may
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Fig. 2. The displacement 3D wire frame and 2D contour plot of the true mode (0,0) of a circular clamped plate with lt ¼ 3.196.
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take the risk for the failure of the CHEEF points. In other words, it works to overcome the spurious eigenproblem by using
only real-part formulation under the condition that we provide sufficient constraints by adding the CHEEF points. It is
well known that kernels of real and imaginary parts are not fully independent and obey Hilbert transform. Therefore,
complex-valued BEM is not the optimal approach since it overlooks the Hilbert transform pair and causes much
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Fig. 3. The displacement 3D wire frame and 2D contour plot of the spurious mode (2,0) of a circular clamped plate with ls ¼ 2.630.
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unnecessary computation. From the viewpoint of computational cost, real-part kernel approach in conjunction with
selected CHEEF points is the best one.
4. Numerical examples

For the numerical experiment, we considered a circular plate with the Poisson ratio n ¼ 1
3
and the radius of one meter

(a=1m) subjected to the clamped boundary condition. The CHEEF method was employed to filter out the spurious
eigenvalues and to check the validity of the mathematical analysis in the following examples.
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Fig. 5. The first minimum singular value s1 vs. l using a CHEEF point x1 (2.2394, 0.0) with displacement constraint.
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Fig. 6. The displacement contour plot of the spurious mode (0,0) of a circular clamped plate with ls ¼ 3.171.
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4.1. True and spurious eigenvalues and modes

By taking six terms in the Fourier series for m(s) and vðsÞ, the semi-analytical method is employed to solve the natural
frequency parameters and natural modes. Figs. 1(a) and (b) show the first and the second minimum singular values of the
influence matrix shown in Eq. (35) versus the frequency parameter l. In the range of 0plp6, we have three true
eigenvalues [3.1962,4.6109 and 5.9057] and six spurious eigenvalues [1.4280, 2.6302, 3.1706, 3.7809, 4.6470 and 4.9042]. All
are repeated eigenvalues, except for the eigenvalue 3.1706 and 3.1962. Since the direct-searching scheme [19] is used, the
drop location indicates the possible eigenvalue. The simultaneous appearance of drop indicates the multiplicities as given in
Fig. 1(b). This case was also solved by using the FEM software (ABAQUS) [29] with 8668 elements and 8818 nodes. In
addition to the results of semi-analytic method and finite element method using ABAQUS, Table 3 also lists the analytic
results of the true and spurious frequency parameters according to the eigenequation in Eq. (34). It is observed that the
spurious frequency parameters were not found in the results of the finite element method. The results of semi-analytical
method match well with those of the analytic results. The true (lt ¼ 3.196) and spurious (ls ¼ 2.630) modes of a circular
plate subject to clamped boundary conditions are shown in Figs. 2 and 3, respectively. The displacement field of the interior
(roa) and exterior (roa) points of true eigenvalue mode are the nontrivial mode and null-field, respectively, as Eqs. (36)
and (37) predicted. On the contrary, Fig. 3 shows the null field in the domain (roa) and the nontrivial field for the exterior
domain (r4a). The interesting results of biharmonic operator for plate here is similar to that of harmonic operator for
membrane [11].

Based on this finding, we can filter out spurious eigenvalues by collocating the nonzero exterior field points in the null-
field integral equation as additional constraints.
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Fig. 7. The first minimum singular value s1 vs. l using two CHEEF points x1 (1.4, 0.0) and x2 (1.4, p/2) with displacement constraint.
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4.2. CHEEF points with displacement constraint

Fig. 4 shows s1 vs. l by additionally considering Eq. (37) for collocating one exterior point x1ðr1 ¼ 1:4;f1 ¼ 0Þ. This
treatment can filter out the single spurious eigenvalue of 3.171. But, after comparing with Fig. 1(b), the other repeated ones
still appear as expected in the analytical derivation. If the collocating exterior point is located at the failure point with
radius rf ¼ 2.2394 as shown in Table 1, which is on the circular node, then the spurious eigenvalue ls of 3.171 cannot be
filtered out as shown in Fig. 5. The spurious eigenmode of 3.171 shown in Fig. 6 indicates two circular nodes which match
well the data in Table 1, for instance, 2.2394 and 3.2239. If the additional two points x1ðr1 ¼ 1:4;f1 ¼ 0Þ and x2ðr2 ¼ 1:4;
f2 ¼ p=2Þ with intersecting angle of p=2 are selected, then the mode type of the spurious eigenvalue with mode (2,0) or (4,0)
cannot be filtered out as shown in Fig. 7 (sinð2ðp=2Þ ¼ 0; sinð4ðp=2Þ ¼ 0), since these modes have diametrical nodes with
intersecting angle of p=2. For example, the spurious eigenvalue ls of 2.63 with mode (2,0) is shown in Fig. 3. Similarly, for
both positions x1 and x2 with intersecting angle p, only the spurious eigenvalue with mode type (0, n) can be filtered out as
shown in Fig. 8 since no diametrical nodes in these spurious modes can be found in Fig. 6. Figs. 9 and 10 are the results by
adopting three points [x1ðr1 ¼ 1:4;f1 ¼ 0Þ, x2ðr2 ¼ 1:4;f2 ¼ p=2Þ and x3ðr3 ¼ 1:4;f3 ¼ pÞ] and four points
[x1ðr1 ¼ 1:4;f1 ¼ 0Þ, x2ðr2 ¼ 1:4;f2 ¼ p=2Þ, x3ðr3 ¼ 1:4;f3 ¼ pÞ and x4ðr4 ¼ 1:4;f4 ¼ 3p=2Þ] with different intersecting
angles, respectively. It is obvious that the results of Figs. 9 and 10 are the same as that of Fig. 7. This indicates that the
additional exterior points with intersecting angle satisfying Eq. (43) will not provide extra independent constraint equations
and fail to filter out spurious eigenvalues. At the same time, if the additional exterior points, one point x1 (r1 ¼ 1.9097,
f1 ¼ 0) and another point x2ðr2 ¼ 1:4;f2 ¼ p=9Þ, are both chosen, then the spurious roots can be filtered out, except
l ¼ 4.904 as illustrated in Fig. 11. It is the failure point with radius rf ¼ 1.9097 as shown in Table 1 that cannot filter out
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Fig. 9. The first minimum singular value s1 vs. l using three CHEEF points x1 (1.4, 0.0), x2 (1.4, p/2) and x3 (1.4, p) with displacement constraint.

1 2 3 4 5 6
10-7

10-6

10-5

10-4

10-3

10-2

M
in

im
u
m

 s
in

g
u
la

r 
v
a
lu

e

S 

T  

T  
S 

T  

x4

x2

x1x3

Frequency parameter (λ)

(0,0) 

(2,0) 

(1,0) 

(4,0) 
(2,0) 

Fig. 10. The first minimum singular value s1 vs. l using four CHEEF points x1 (1.4, 0.0), x2 (1.4, p/2), x3 (1.4, p) and x4 (1.4, 3p/2) with displacement

constraint.



ARTICLE IN PRESS

1 2 3 4 5 6
10-7

10-6

10-5

10-4

10-3

10-2

M
in

im
u
m

 s
in

g
u
la

r 
v
a
lu

e

T  

S 

T  

T  

x1

x2

Frequency parameter (λ)

(0,0) 
(1,0) 

(4,0) 

(2,0) 
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Fig. 12. The displacement contour plot of the spurious mode (4,0) of a circular clamped plate with ls ¼ 4.904.
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this spurious root. The spurious eigenmode of l ¼ 4.904 shown in Fig. 12 indicates two circular nodes which match the
data in Table 1, for instance, 1.9097 and 2.5957. Fig. 13 indicates that if the additional two exterior points x1ðr1 ¼ 1:4;
f1 ¼ 0Þ and x2ðr2 ¼ 1:4;f2 ¼ p=9Þ are carefully chosen, then all the spurious eigenvalues can be filtered out.

4.3. CHEEF points with normal derivative constraint

In addition to transverse displacement constraint by Eq. (37), the normal derivative constraint in Eq. (38) can be
considered here. If the two exterior points, one point x1 (r1 ¼ 1.8759, f1 ¼ 0) and another point x2ðr2 ¼ 1:2;f2 ¼ p=9Þ,
are both chosen, then the spurious eigenvalues can be filtered out, except 2.630 as illustrated in Fig. 14. It is the failure
point with radius rf ¼ 1.8759 as shown in Table 2 that cannot filter out this spurious root. The normal derivative
contour plot of the spurious eigenmode of 2.630 as shown in Fig. 15 indicates two circular nodes which match well the data
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Fig. 13. The first minimum singular value s1 vs. l using two CHEEF points x1 (1.4, 0.0) and x2 (1.4, p/9) with displacement constraint.
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in Table 2, for instance, 1.8759 and 3.1756. As the results of the displacement constraint shown in Fig. 13, all the spurious
eigenvalues can be filtered out by employing the normal derivative constraints, as presented in Fig. 16, if the two exterior
points x1ðr1 ¼ 1:2;f1 ¼ 0Þ and x2ðr2 ¼ 1:2;f2 ¼ p=9Þ are carefully chosen.

4.4. CHEEF points with tangent derivative constraint

Instead of employing normal derivative constraints, the tangent derivative constraint in Eq. (39) is considered. The
situation is quite different. As expected in the trivial (m ¼ 0) tangent derivative constraint of Eq. (39), Fig. 17 indicates that
wherever the position of collocating points were chosen or two more CHEEF points were added, the spurious eigenvalue
with mode (0, n), such as ls ¼ 3.171 with (0, 0), cannot be filtered. The tangent derivative contour plot of the spurious
eigenmode of ls ¼ 3.171 shown in Fig. 18 indicates a null field in the full plane, so the tangent derivative constraint cannot
provide the independent constraint for the spurious eigenvalues with mode (0, n) due to the axial symmetric configuration.

4.5. CHEEF points with mixed-type constraints

As stated previously, the repeated spurious eigenvalues can be filtered out by collocating two independent exterior points
which must avoid satisfying Eq. (43). Free of checking the intersection angle, we can consider the mixed-type constraints,
such as combining displacement and normal derivative constraint at the same time. Fig. 19 shows s1 vs. l by additionally
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Fig. 15. The normal derivative contour plot of the spurious mode (2,0) of a circular clamped plate with ls ¼ 2.630.
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considering displacement constraint of Eq. (37) and normal derivative constraint of Eq. (38) for one exterior collocating
point x1ðr1 ¼ 1:4;f1 ¼ 0Þ. Although two constraints are involved, all spurious eigenvalues except 3.171 still appear by this
combined constraint. Since this collocating point is on the diametrical node, the normal derivative at this point is definitely
zero. Therefore this normal derivative constraint cannot offer independent constraint. Fig. 20 shows s1 vs. l by
additionally considering Eqs. (38) and (39) for collocating one exterior point x1ðr1 ¼ 1:4;f1 ¼ 0Þ. Fig. 21 shows s1 vs. l by
additionally considering Eqs. (37) and (39) for collocating one exterior point x1ðr1 ¼ 1:4;f1 ¼ 0Þ. From the results of
figures above, we only keep the collocating point far away from the failure points as listed in Tables 1 and 2 and then all the
spurious eigenvalues can be easily and efficiently filtered out.
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Fig. 17. The first minimum singular value s1 vs. l using two CHEEF points x1 (1.6, 0) and x2 (1.6, p/9) with tangent derivative constraint.

-4 -3 -2 -1 0 3
-4

-3

-2

-1

0

1

2

3

4

1 2 4

Fig. 18. The tangent derivative contour plot of the spurious mode (0,0) of a circular clamped plate with ls ¼ 3.171.
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5. Conclusions

Spurious eigensolutions of plate vibration stemming from the real-part BIEM were examined. By adopting the CHEEF
method, constraints from the null-field equation are employed to deal with the problem of spurious solutions. The
constraint equations in transverse displacement and its normal and tangent derivatives for the CHEEF points in the
circular plate were derived. The failure CHEEF points in selecting the exterior collocating points for circular plate were
derived analytically and demonstrated numerically. If the constraints of transverse displacement, normal derivative and
tangent derivative are properly chosen, one collocating point was enough to filter out all the spurious eigenvalues easily and
efficiently, even for the repeated spurious eigenvalues. The CHEEF method can obviously reduce memory storage and
computation time in comparison with those using other approaches. Although the circular case lacks generality, it leads to
significant insight into the occurring mechanism of spurious eigensolution. It is also a great help to researchers who may
require an analytical explanation as to why spurious eigensolutions occur and how they can be suppressed.
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Fig. 19. The first minimum singular value s1 vs. l using one CHEEF point x1 (1.4, 0) with both displacement and normal derivative constraints.
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Fig. 20. The first minimum singular value s1 vs. l using one CHEEF point x1 (1.4, 0) with both normal and tangent derivative constraints.
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Fig. 21. The first minimum singular value s1 vs. l using one CHEEF point x1 (1.4, 0) with both displacement and tangent derivative constraints.
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Appendix A. Degenerate kernels
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in which the superscripts 1 and 2 denote the interior domain (i.e. roR) and the exterior domain (i.e.r4R), respectively.
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where the superscripts 1 and 2 denote the interior domain (i.e. roR) and the exterior domain (i.e. r4R), respectively.
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